
  

Alexey Salnikov and Dmitry Andreev 
({salnikov,andreev}@angel.cs.msu.su)

An MPI-Based System for Testing Multiprocessor and Cluster 
Communications 

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

Introduction

It is difficult to predict duration of message transfer between two 
processors in multiprocessor or cluster communications. The 
difficulty is caused mainly by a large number of communicating 
processes and/or  components of a cluster. 

Thus, there is a crucial need to develop intellectual testing 
applications and visualization tools for it.

We have developed such application on the base of MPI library. 

Methodology of testing

The user specifies several parameters for testing application: type of 
test, parameters of the background communications and  
parameters of goal communications (an interval of message length, 
a step of message length and a number of repeats for each 
message length). 

The "network_test" application begins its work with the lowest 
message length in the given interval, upon each step it increases the 
message length, it stops after reaching the maximal possible 
message length.

For each message length the application performs data 
transmissions through communications. For each pair of processors 
i and j the average duration of a transmission and other standard 
statistical parameters are computed. The duration is estimated by 
the MPI_Wtime function. 

The obtained matrices form the result of a test, they are stored in 
four text files.

Results file format (all parameters are duplicated in command line)

processors 100 - number of MPI-processes
test type "all_to_all" - one of the testing modes
data type "minimum" - type of data stored in this  file 
begin message length 0 - message length that will be used on
                                                        application start 
end message length 100000       - upper border of messages length
                                                         interval
step length 1000        - step value
noise message length 0                - message length for noise procs for
                                                        test_noise and test_noise_blocking
number of noise messages 1       - number of noise messages emmited
                                                        by earch noise process
number of noise processes 0       - noise processes
number of repeates 300             - number of testing iteration for one
                                                        message length. Used to counting
                                                        median, deviation, and so one. 
hosts:
<list of hosts>
...

  
  Message length 0
 <matrix for this message length>
  ...

Testing modes

one_to_one MPI-process with rank 0 has a 
cycle where it go over all possible 
combinations of processes pairs. Then it 
sends an information to both processes in 
pair with their roles and partner's rank. 
Then one MPI-process from the pair sends 
messages to the other which receives 
them. The duration of MPI_Recv call is 
measured.  After all messages are 
transmitted each process in pair sends a 
confirmation to the process with rank 0.

async_one_to_one  mode is analogous to  
one_to_one mode but messages are  
transmitted in asynchronous manner. 
Processes in the pair use calls MPI_Isend 
and MPI_Irecv simultaneously in contradict 
directions. Duration of MPI_Wait are 
measured only for one process in the pair.

The all_to_all  mode strives for condition 
where all the processes transmit 
messages to each other simultaneously. 
Each process sends  messages to all 
other processes and itself with 
MPI_Isend and receives messages with 
MPI_Irecv. There is a loop where it waits 
until any MPI_Irecv finishes with call 
MPI_Waitany and measure the duration 
of this message exchange. 

test_noise and  test_noise_blocking  modes are combinations of  
all_to_all and one_to_one. The process with rank 0 divides all 
processes into three non-overlapping sets: “goal processes”, “idle 
processes” and “noise processes”. It uses MPI_Bcast call to 
broadcast information on the role of each process. Then by means of 
MPI_Reduce it collects confirmations. The “goal processes” form a 
pair (similar to one_to_one or async_one_to_one modes) where the 
durations of MPI_Recv will be measured. The “noise processes” are 
chosen randomly. They provide background in the cluster 
communications by sending a number of “noise” messages using the 
all_to_all-like interaction scheme.

Idle processes

Goal processes

Noise processes

GUI description

GUI is a Sun Java 1.5 application designed to visualize 
results of communications testing with three modes of data 
visualization. 

In the first mode a matrix of delays for a 
fixed message length is drawn. This mode 
has two internal modes of data 
normalization: the local mode in one matrix 
and the global mode in all results. The 
intensity of black corresponds to the 
normalized duration of transmitting. The 
min value is converted to the white color 
and the max value is converted to the black 
color. The intensity of red shows  the ratio 
between the deviation and  the test result.

Figure 1

In the second mode the user chooses 
one row or column in matrix and the 
program draws this for all messages 
length. This mode highlights delays for 
one fixed MPI-process. See Fig. 2.

In the third mode a 
plot for chosen pair 
of MPI-processes is 
built. See Fig. 1.

Image zooming and black/white levels 
adjusting are available.

Figure 2

Results

The applications have been tested on 
mvs100k (cluster of 470 nodes with four 
Intel Xeon 5160 processors which are 
connected through Infiniband network) and 
IBM pSeries 690 (SMP system with 16 
processors in our configuration).

We test all modes of network_test 
application on mvs100k and IBM pSeries 
690. Unfortunately testing modes noise 
and noise_blocking are very slow with 
many processors so we have not data for 
mvs100k.

The network_test application allows to 
highlight multiprocessor or cluster 
topology.  On the Figure 1 we can see the 
cache hierarchy for two MCM modules in 
IBM pSeries 690.

On the Figure 2  represented result of 
one_to_one test mode for 500 processors 
on mvs100k. There is a matrix of delays for 
all messages length that process with rank 
241 receive from other processes. The 
influence of deviation seems to become 
neglected with grows of message length.

Figure 3 Figure 5Figure 4

There is a hierarchical cells structure on the Fig. 3 
that gives an information on the mvs100k machine 
topology. The eight pixel of size сells closest to the 
matrix diagonal correspond shared memory in one 
cluster node. Each of the surrounding cells 
corresponds to one of the hardware switches that 
connect cluster nodes. The next surrounding cells 
layer corresponds to higher level switch hierarchy. 
Red moire corresponds to electromagnetic 
inducings.

The Fig. 4  is drawn by results of testing 
mvs100k in all_to_all mode with 300 
processors. We can see high value of 
deviation. Cells that conform with shared 
memory are remained in this testing 
mode similar to the one_to_one mode. 
We see several cluster nodes that have 
discriminated behaviour presumably by 
reason the activity of operating system. 

Fig. 5 shows the results of testing 
mvs100k in async_one_to_one mode 
with 500 processors. We see increase 
of the communication heterogeneity  
with the growth of message length.

The network_test application and GUI are 
available from download page of PARUS 
project:

http://parus.sf.net


	Страница 1

